Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects
نویسندگان
چکیده
The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.
منابع مشابه
Mode-Wise Thermal Conductivity of Bismuth Telluride
Thermal properties and transport control are important for many applications, for example, low thermal conductivity is desirable for thermoelectrics. Knowledge of modewise phonon properties is crucial to identify dominant phonon modes for thermal transport and to design effective phonon barriers for thermal transport control. In this paper, we adopt time-domain (TD) and frequency-domain (FD) no...
متن کاملObserving the Interplay Between Composition and Phonon Transport in Bi2Te3-xSex Alloys using ADF STEM
Bismuth telluride-selenide alloys are some of the most commonly used thermoelectrics at room temperature. In these materials, phonon scattering plays a pivotal role in controlling the thermoelectric properties where decoupling phonons and charge carriers induces a net heat flux that results in an electric potential. Understanding the heat flow requires knowledge of phonon scattering behavior as...
متن کاملMicro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials
Bismuth telluride (Bi2Te3) and related compounds have recently attracted strong interest, owing to the discovery of the topological insulator properties in many members of this family of materials. The few-quintuple films of these materials are particularly interesting from the physics point of view. We report results of the micro-Raman spectroscopy study of the “graphene-like” exfoliated few-q...
متن کاملMicrostructure and Thermal Conductivity Modeling of Granular Nanoplatelet Assemblies
Consolidation and sintering of bismuth telluride nanoplatelets is a cost-effective method of manufacturing high thermoelectric figure-of-merit materials. A structural optimization method is employed here to study the effects of columnar structures formed by nanoplatelet composites on thermal transport. The initially sparse and random distribution of nanoplatelets is compacted into a jammed stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016